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A B S T R A C T   

Microplastics (MPs) pollution is a newly emerging environmental issue. MPs can accumulate within animals and 
humans, which can pose a serious health threat. Petroleum-based polyethylene (PE) is one of the most popular 
plastics. Accordingly, its exposure rates have steadily increased over the years. This study aimed to analyze the 
effects of PE-MPs on the hematological system of albino rats and the epigenetic effect. Five groups of adult male 
eight-weeks-old rats received either distilled water, corn oil, 3.75 mg/kg PE-MPs, 15 mg/kg PE-MPs, or 60 mg/kg 
of PE-MPs, daily by oral gavage for 35 days. PE-MPs significantly increased the body weights of the rats and lipid 
peroxidation, with concomitant reduction of superoxide dismutase activity and depletion of reduced glutathione, 
thus adversely affecting oxidants/antioxidants balance. Moreover, PE-MPs increased the % of abnormal RBCs, 
irregular cells, tear drop cells, Schistocyte cells, and folded cells. The genotoxic effects on DNA were evident by 
increased DNA damage, confirmed by the comet assay, in addition to increased DNA methylation. The effects of 
PE-MPs have been shown to be dose correlated. In conclusion, this study provides evidence of dose-related PE- 
MPs-induced hematological, genotoxic, and epigenetic effects in mammals, and thus emphasizes the potentially 
hazardous health effects of environmental PE-MPs.   

1. Introduction 

Plastics have encompassed a large part of our lives, with plastic 
production has risen significantly over the past decades. Plastics have 
been used as an alternative to other materials like glass, metals, paper, 
and wood (Geyer et al., 2017; Yao et al., 2022). There is a global pro-
duction of millions of tons of plastic (ICH S2 (R1) Genotoxicity Testing 
and Data Interpretation for Pharmaceuticals Intended for Human Use - 
Scientific Guideline, 2022). It is suggested that by the year 2025, 
approximately 100–250 million tons will enter surface waters (Ali et al., 
2021). However, with massive production comes more pollution and 

thus more potential hazardous health effects (Sayed et al., 2021; 
Abdel-Zaher et al., 2023). 

Plastic wastes may be decomposed via hydrolysis, physical/me-
chanical forces, and ultraviolet light to form tiny particles, also known as 
microplastics (MPs) (Moore, 2008; Du et al., 2021). MPs are small plastic 
pieces ranging in size from 0.1 mm to 5 mm. Various MPs can be found 
within the environment. The main component of MPs includes poly-
propylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and poly-
ethylene (PE), with PE being one of the most prevalent ones (Ali et al., 
2021; Santacruz-Juárez et al., 2021). Although PE, PP, and PS-MPs were 
thought to be predominately found in the oceans (Wei et al., 2021), a 
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recent study found that landfill plastic pollution was approximately 
4–23 times that of plastic pollution found in the ocean (Rudolph et al., 
2021). 

Microplastics (MPs) are primarily produced by two sources: products 
containing plastic powders, such as cosmetics, detergents, sunscreens, 
and medicine delivery systems, in addition to those produced by break 
down of bigger plastic particles by ultraviolet radiation, mechanical 
abrasion, biological degradation, and other environmental factors 
(Abdel-Zaher et al. 2023). The predominate presence of MPs in food 
packaging, manufacturing, etc., increases the susceptibility of their 
ingestion, whether in animals, aquatic marine life, birds, mammals, and 
even humans (Auta et al., 2017; Ageel et al., 2022). MPs have the ability 
to accumulate in various organisms, including humans. Through many 
studies, it was confirmed that MPs can pass through body tissues, due to 
their non-degradable nature and minute size (Jin et al., 2021). MPs may 
enter the body of humans through three main routes: (1) oral intake of 
aquatic products (McNeish et al., 2018) and packaged food products 
(Waring et al., 2018), (2) dermal exposure (Hüffer et al., 2018), and (3) 
inhalation (Wright and Kelly, 2017; López et al., 2023). Oral route is 
considered the most common route of MPs exposure (Chang et al., 
2020). Following exposure, MPs are absorbed via epithelial cells of the 
intestine, then subsequently enter the circulatory system and accumu-
late in many body cells and organs (Paul-Pont et al., 2018). MPs toxicity 
may be associated with Plastics themselves, or the additives found 
within them, as well as the adsorbed organic pollutants on the surfaces 
of MPs (Anderson et al., 2016; Kılıç et al., 2023). 

MPs toxicity has been documented to affect many organs including 
liver, kidneys, brain, and reproductive ones (Kim et al., 2021). The 
pathophysiology of MPs toxicity in mammals is complex and is not yet 
extensively studied. MPs exposure is found to be associated with the 
induction of oxidative stress, cytotoxicity, and inflammation. They also 
interfere with energy and lipid metabolism and induce sub-cellular 
organ dysfunction (Llorca and Farré, 2021; Matthews et al., 2021). 
The toxicity of MPs may be enhanced by co-pollutants adsorbed on their 
surface (Zolotova et al., 2022). MPs beads’ toxicity is determined by 
their size or type of plastic (Choi et al., 2020). 

Blood and haematological parameters are an excellent means to 
determine toxic exposure of a substance and the overall subject health 
(Joshi et al., 2002; Mekkawy et al., 2011; Zbidah, 2014). The most 
abundant cells in the blood are the red blood cells (RBCs). In addition to 
anemia, impaired RBCs can cause hypoxia-related symptoms and 
various other health issues. When toxic xenobiotics enter the body, they 
will most likely affect RBCs. It has been reported that MPs cause 
apoptosis and necrosis in Danio rerio RBCs (Guimarães et al., 2021), and 
in amphibians, Physalaemus cuvieri tadpoles (da Costa Araújo and 
Malafaia, 2021). PS-MPs were also recently found to affect mice RBCs 
adversely (Wang et al., 2022). 

One of the main concerns about MPs is how they can affect DNA and 
their role as mutagenic and epigenetic pollutants. There has been 
growing concern about possible genotoxicity to humans induced by MPs 
(Çobanoğlu et al., 2021). Since these substances are microscopic, they 
can pass through the cell membrane and reach DNA, causing DNA 
damage. Until now, little is known about the exact mechanism of 
MPs-associated genotoxicity but increased genetic defects have been 
linked to the increased reactive oxygen species (ROS). MPs exposure was 
found to reduce the antioxidant defenses of the cells, with a subsequent 
increase of ROS. ROS can induce DNA strand breakage, thereby 
increasing the risk of chronic disorders and cancer (Dusinska et al., 
2017). Genotoxicity encompasses different forms of harm done to the 
genome, including mutagenic lesions, chromosomal rearrangements 
and/or breakage, and numerical chromosome aberrations. Gel electro-
phoresis, or comet assay, is one of the means used to analyze genotox-
icity (Dusinska et al., 2017; Han et al., 2023). MPs genotoxicity was 
previously documented in fish (Guimarães et al., 2021; Pannetier et al., 
2020), and recently in mice (Guimarães et al., 2023; Zheng et al., 2019). 

Among the most intriguing research areas is epigenetic toxicology, 

which studies epigenetic changes induced by environmental exposures. 
Gene expression changes caused by epigenetic factors occur without 
alterations in DNA sequence. There is evidence that some environmental 
toxins influence the epigenome, by changing DNA methylation, modi-
fying histone proteins, and affecting chromatin structure and miRNA 
expression. Evidence has proved that epigenetic alterations are involved 
in numerous pathologies, including, obesity, cancer, and neurological/ 
psychological disorders (Marczylo et al., 2016). 

The epigenetic alterations driven by MPs have rarely been studied. 
Evidence of MPs epigenetic effects have been recently reported in 
Drosophila (Zhang et al., 2020) and in mice (Li et al., 2022); however, the 
results are still preliminary, and the mechanism of action has not yet 
been fully elucidated. The epigenetic effect of PE-MPs in mammals was 
not previously studied, and no study about the effect of MPs on DNA 
methylation is yet available. Therefore, this study was conducted to help 
answer for the following questions: (1) Do PE-MPs have epigenetic ef-
fects in mammals, (2) If yes, are these effects correlated to the dose of 
PE-MPs. We also hypothesize that PE-MPs exposure can induce RBCs 
abnormalities and DNA damage in rats, which are dose-dependent and 
strongly correlated to PE-MPs- induced oxidative stress. 

2. Materials and methods 

2.1. Microplastics 

The polyethylene microplastics (PE-MPs) were purchased from 
Micro Powders Inc (580 white Plains Rd, Tarrytown, NY 10591, United 
States, product name MPP-635XF, CAS number 9002-88-4). PE-MPs 
consisted of raw white powder with mean particles size ranging from 
4.0 to 6.0 µm. A stock solution was prepared by dispersing PE-MPs in 
corn oil by using the magnetic stirrer according to the manufacturing 
procedures at room temperature. Prior to altering MPs structure or 
adding it to any substance, the structure of the MPs was documented 
using a scanning electron microscope at the transmission electron mi-
croscope unit (TEMU), Assiut University using JEOL JEM-1200 EX II 
(Massachusetts, USA). Fourier transform infrared spectroscopy (FTIR) 
was used to identify the microplastics composition. FTIR spectra were 
recorded in the range of 4000–400 cm− 1 using (Thermo Scientific 
Nicolet iS10). 

2.2. Animals 

Thirty-five adults male Sprague Dawley rats, 8-week-old, weighting 
(150–180 g), were bought from the animal house, Veterinary Medicine 
College, Benha University, Egypt. The rats were placed in individual-
ized, clean, environmentally controlled cages (3–4 animals/cage) (12 h 
light and dark cycle, 350–65 % humidity, 30–25 ◦C). Animals had free 
access to tap water as well as food ad libitum on commercial pellets and 
allowed to acclimate for one week prior to any experimentation. All 
procedures were approved and done according to the guidelines 
approved by the Ethics Committee of the Faculty of Medicine, Benha 
University, Egypt (approval no. RC: 31-11-2022), which is basically 
conform to the guide for the care and use of laboratory animals of the 
national institutes of health in the USA (NIH publication No.86-23, 
revised 1996). Furthermore, All methods are reported in accordance 
with ARRIVE guidelines. 

2.3. Experimental scheme 

Randomization of animals was done, based mainly on animal weight, 
to ensure initial animals weights don’t show any significant difference. 
The rats were divided into five groups with seven rats per group. In this 
study, two separate negative control groups were used, one received 
distilled water and the other received corn oil; the vehicle. The three 
other groups were the experimental groups; PE-MPs groups; divided 
based on the amount of oral PE-MPs dosage as low-, medium-, and high- 

A.A. Farag et al.                                                                                                                                                                                                                                



Toxicology 492 (2023) 153545

3

dose groups. The low-dose group received 3.75 mg/kg body weight of 
PE-MPs daily, the medium-dose group received 15 mg/kg body weight 
of PE-MPs daily, and the high-dose group received 60 mg/kg of PE-MPs 
daily. Treatments were given using oral gavage for a total of 35 days 
(Park et al., 2020). Animal weights were recorded weekly. 

2.3.1. Collection of blood samples 
Following 24 h after the final dose, the rats were euthanized, rats 

were euthanized under the conventional protocol of inhalation anes-
thesia using isoflurane (El Amriya for pharmaceutical industries, Al 
Amyria, Alexandria). Blood samples were then obtained from the 
abdominal aorta. A portion of the blood collected was used to prepare 
blood smears and agarose microgels for the alkaline comet assay, 
another portion of blood was collected in the EDTA vacutainer tubes for 
DNA methylation analyses. The last portion of the blood sample was 
used for the preparation of serum, collected in uncoated tubes, and 
allowed to coagulate, it was then centrifuged at 2000 rpm for 30 min, 
serum was separated and stored at − 20◦C until further biochemical 
processing. 

2.3.2. Blood smear preparation 
After the blood samples were collected, smears were done on a clean 

slide (non-heparinized blood sample). After the slides dried, they were 
fixed in absolute methanol for 10 min and subsequently stained with 
hematoxylin and eosin, rinsed in distilled water, air-dried, and mounted. 
Scores were assigned randomly to the slides based on the staining 
quality. In each group, 3000 cells (minimum of 100 cells per slide) were 
analyzed and were photographed at x400 magnification by using 
(OMAX with 14 Mp Camera, MN:A35140U3,China) for polymorphic 
erythrocytes according to (Al-Sabti and Metcalfe, 1995; Schmid, 1975). 
The marked morphological alterations of RBCs such as echinocyte cells, 
sickle cells, and acanthocyte cells were recorded. 

2.3.3. Oxidative stress biomarkers 
Serum malondialdehyde (MDA) levels were measured using com-

mercial kit (Biodiagnostic, Egypt, Catalog number: MD 2529), according 
to the manufacturer’s instructions. The principle is based on the reaction 
of MDA with thiobarbituric acid in acidic medium, to produce a thio-
barbituric reactive compound with a pink color that can be measured 
spectrophotometrically at 534 nm. A method previously performed by 
Ohkawa et al. (1979). 

The activity of serum superoxide dismutase (SOD) was measured 
spectrophotometrically at 560 nm, using commercial kit (Biodiagnostic, 
Egypt, Catalog number: SD 2521), according to the manufacturer’s in-
structions. The kit methodology is based on the principle originally 
performed by Nishikimi et al. (1972).Serum reduced glutathion (GSH) 
was also determined using commercial kit (Biodiagnostic, Egypt, Cata-
log number: GR 2511, according to the manufacturer’s instructions. 

2.3.4. DNA damage detected by the alkaline comet assay 
DNA breaks and alkali-labile sites can be detected using the Comet 

Assay (single cell gel electrophoresis). The blood samples were diluted 
using phosphate-buffered saline (PBS, 0.1 M) 1:2. After that, slides were 
coated with 100 μl of normal-melting-point agarose (0.7 %) as a first 
layer, once it dries, 75 μl of low-melting-point agarose and 15 μl of blood 
sample were applied, representing the second layer. These slides were 
putted in lysis buffer (1 % sodium sarcosinate, 2.5 M NaCl, 100 mM 
Na2EDTA, 10 m M Tris-HCl, 1 % Triton X-100 and DMSO 10 %) for 2 h, 
after discarding the lysis buffer, slides were washed using cold distilled 
water for 15 min twice. Slides were then oriented on the horizontal gel 
box. Freshly prepared electrophoresis buffer (0.3 M NaOH, 1 mM 
Na2EDTA, pH 13) was used to fill the buffer reservoirs, with the slides 
completely covered. The slides were left to sit in this buffer for 20 min at 
room temperature to allow for unwinding of DNA. A power supply 
producing 24 volts was attached for 30 min, and then the slides were 
stained with Ethidium bromide (20 ugh/ml), and left for a total of five 

minutes. Finally, the slides were dipped in cooled distilled water to 
remove any excess stain (Singh et al., 1988). The procedure was per-
formed in the dark to avoid supernumerary damage of DNA. Analysis of 
1000 nuclei (minimum of 100 nuclei per slide) were achieved by a 
fluorescent microscope (Olympus BX51) (under 400 x magnification). 
DNA damage measured using image analysis software TnTek Comet 
Score TM (AutoComet.com,Ver. 1.5). 

2.3.5. Global DNA methylation 
Using the EDTA blood collection tubes, blood samples were 

collected. DNA isolation from whole blood was performed using 
QlAamp Mini DNA Kit (Qiagen, USA), in accordance with the manu-
facturer’s protocol. Thermo Scientific NanoDrop 2000c Spectropho-
tometer (Nanodrop Technologies) was used to analyze DNA quality. The 
starting DNA concentration for methylation analysis was 50 ng/μl. One 
microliters of DNA was used for the evaluation of the methylated frac-
tion of DNA; 5-methyl-cytosine (5-mC), which was detected by using 
detection antibodies, and then colorimetrically quantified. Global DNA 
methylation was detected in the isolated blood DNA by MethylFlash™ 
Global DNA Methylation (5-mC), ELISA Easy Kit (Catalog#:P-12034, 
Epigentek, e, NY, USA) was performed as per the kit instructions. The 
percentage of 5- mC was calculated in 100 mg DNA extracted using the 
second order regression equation of the standard curve in experiment 
groups. The reactions were performed in duplicates and average values 
were used for statistical analysis. 

2.3.6. Statistical analysis 
The normality of distribution for the analyzed variables were tested 

using Kolmogorov-Smirnov and Shapiro tests assuming normality at P >
0.05. The collected data were summarized in terms of median and Inter 
Quartile Range (IQR) as appropriate for nonparametric data. The sta-
tistical significance of the difference between groups was evaluated 
using Kruskal Wallis test. Bonferroni correction for multiple tests was 
used for pairwise comparisons of the study group. Spearman correlation 
and simple linear regression were done for quantitative data to detect 
dose dependent effect (Statistical Package for the Social Sciences (SPSS) 
28.0 for windows SPSS Inc., Chicago, IL, USA). P value < 0.05 was 
considered significant. 

3. Results 

3.1. Characterization of polyethylene micro-plastics (PE-MPs) 

PE-MPs morphology was demonstrated using a scanning electron 
microscope (Fig. 1a &b). PE-MPs were found to have irregular frag-
mented shape particles with sharp edges. The FTIR analysis illustrated 
the significant peaks shown at 2854 and 2922 cm− 1 for asymmetric 
-CH2. Peaks at 1463, 1159, and 722 cm− 1 are related to bending -CH2, 
while the band of emulsion residue is observed at 1744 cm− 1 (Fig. 1c). 
Peaks are consistent with PE characteristic ones (Zhang et al. 2021). 

3.2. Effect of PE-MPs exposure on rat body weight 

PE-MPs moderate and high dose induced a significant increase in 
body weight at the fifth week, compared to negative controls (distilled 
water and corn oil treated groups) (P < 0.05). No statistically significant 
difference was found between body weight among other studied groups 
during five weeks of treatments (p > 0.05) (Fig. 2). 

3.3. Effect of PE-MPs exposure on oxidative stress related parameters 

Both moderate and high dose PE-MPs induced a significant decrease 
of SOD and GSH depletion, with a correlated increase of lipid peroxi-
dation, measured as MDA level, as compared to negative control groups 
(P < 0.001). Low dose PE-MPs didn’t induce any significant changes in 
oxidative stress related parameters as compared to the control groups 
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(P > 0.05) (Fig. 3a, b and c). 

3.4. Effect of PE-MPs exposure on red blood cells 

Both groups treated with 15 or 60 mg/kg body weight PE-MPs 
significantly increased RBCs abnormalities in comparison with other 
studied groups (P < 0.001). Low dose PE-MPs-induced RBCs abnor-
malities was not statistically significant compared to negative control 
groups (p > 0.05) (Fig. 4). 

3.5. DNA damage induced by PE-MPs exposure 

Fig. 5 depicts the PE-MPs-induced DNA damage, which was 
measured by the comet assay of the studied groups (Fig. 5). The intact 
nuclei can be observed in images representative of both control groups; 
distilled water and corn oil administered groups (Fig. 5a, and b) 
respectively. Group treated with 3.75 PE-MPs mg/kg showed mild 
tailing with slight damage in the nucleus (c). Group treated with 15 mg/ 
kg showed a medium degree of damage (d). High dose, 60 mg/kg PE- 
MPs group, (e) showed a high degree of damage (long tail and small 
nucleus). There were high statistically significant differences between 
DNA changes by comet assay among high, moderate and low dose 
groups and distilled water groups and corn oil groups (Table 1). High 
dose of PE-MPs and moderate dose significantly increased percent of tail 
DNA and tail length in comparison to corn oil and distilled water groups 
(P < 0.001), in addition to a significant increase in tail length, tail and 
olive tail moments. There were no statistically significant differences 
between DNA changes by comet assay among low dose PE-MPs treated 
group and distilled water group and corn oil group (p > 0.05) (Table 1). 

Fig. 1. Characterization of PE-MPs. (a) Low power and (b) high power image of PE-MPs under SEM. (c) FTIR spectroscopy of PE-MPs. PE-MPs: Polyethylene 
Microplastics. SEM: Scanning electron microscope. FITR: Fourier transform infrared spectroscopy. 

Fig. 2. The effect of high, medium, and low doses of polyethylene microplastics 
(PE-MPs) on changes in body weight in studied groups. Untreated control: 
Received only distilled water, Vehicle control: received corn oil (the vehicle), 
and the other groups received PE-MPs at three different doses. Results are 
represented as median. * *: Significantly different from untreated control and 
vehicle control groups, (P < 0.05) (Kruskall Wallis test=17.32 &17.89 respec-
tively). n = 7. 
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3.6. Global DNA methylation induced by PE-MPs exposure 

High dose of PE-MPs significantly increased DNA methylation in 
comparison to distilled water and corn oil among studied groups 
(P < 0.05). No statistically significant difference was recorded between 
DNA methylation level among other treated groups (p > 0.05) (Fig. 6). 

3.7. Heat map correlation between different measured parameters 

PE-MPs doses showed high negative correlation with GSH and SOD 
levels (P < 0.001), while showed positive correlation with other 
assessed parameters (P < 0.001). Significant negative correlation was 
found between MDA and both GSH and SOD, as reduced antioxidant 
defenses are associated with a rational increase of lipid peroxidation 
marker. RBCs abnormalities and DNA damage were negatively corre-
lated with antioxidants, GSH and SOD, and positively correlated with 
increased lipid peroxidation and MDA, which emphasizes the role of 
oxidative stress in mediating RBCs and DNA damage. There were highly 
significant positive correlations between PE-MPs dose and RBCs 

abnormalities, DNA changes by comet assay, DNA methylation and body 
weight among studied among groups (P < 0.001), Fig. 7, Table 2. 

4. Discussion 

Recent global attention has been focused on MPs’ environmental 
contamination. MPs can adversely affect human health because plastics 
are highly resistant to degradation and can endure in the environment 
for a long time. Air, food, drinks, packaging, and even packaging ma-
terials expose humans to MPs. In living organisms, MPs accumulate in 
their cells and tissues, potentially causing chronic biological effects, 
such as gastrointestinal disorders, immunity, respiratory problems, 
cancer, infertility, and chromosome modifications. The health effects of 
MPs and mechanisms of toxicity must be extensively studied because of 
the threat they pose to human health (Haindongo et al., 2023; Mamun 
et al., 2023). 

MPs serve as carriers for a variety of elements and different toxicants 
that result in many hazardous effects on the physiology of humans and 
other animals. Up till now, there is little known regarding the impact of 

Fig. 3. The effect of high, medium, and low doses of polyethylene microplatics (PE-MPs) on oxidative stress markers. A: Serum level of glutathione (GSH), and B: 
Serum level of superoxide dismutase (SOD), A: Serum level of malondialdehyde (MDA). Untreated control: Received only distilled water, Vehicle control: received 
corn oil (the vehicle), and the other groups received PE-MPs at three different doses. * *: Significantly different from untreated control and vehicle control groups, 
(P < 0.001). n = 7. 
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MPs on human health (Kim et al., 2021). Animal models have proved 
useful in determining MPs exposure risks, which can aid in determining 
its effect on the human body as well (da Silva Brito et al., 2022). PE is the 
main kind of MPs in the environment (Sun et al., 2021). 

Body weight is a common sensitive indicator used in the field of 
toxicology (Xie et al., 2022). The current study demonstrated an in-
crease in body weight in high dose PE-MPs treated rats when compared 
with the control group. The same observation was noted by others (da 
Costa Araújo and Malafaia, 2021; Han et al., 2021; Xie et al., 2022). This 
increase in body weight has been found to be related to PE-MPs induc-
tion of oxidative stress and associated alteration of energy and fatty acid 
metabolism. Accumulation of MPs in the liver and kidney has also been 
shown to boost the growth and accumulation of fat cells and disrupt 
energy balance, which ultimately increases body weight (Sun et al., 
2021). Furthermore, the obesogenic effect of MPs might be due to 
affection of the gut-liver axis as gut microbiota dysbiosis is a common 
effect of MPs. Changes in gut microbiota can perturb physiological ho-
meostasis, leading to an alteration of body weight (Shi et al., 2022). 
Besides, a connection between exposure to MPs and induction of insulin 
resistance has been suggested, which may further explain increased 
body weight (Huang et al., 2022). Our result was in contrast to Deng 
et al., 2021; Park and Kim, 2022 who found a regression in body weight 
on short-term administration of PE-MPs. 

Evidence suggest that PE-MPs have pro-oxidative properties. PE-MPs 

alter the oxidative–antioxidative system within mouse serum, as 
demonstrated by various studies, and these imbalanced alterations 
result in increased ROS production and subsequent oxidative stress on 
the cells (Dusinska et al., 2017). In the same context, in our study we 
recorded reduced serum levels of cellular key antioxidant players; SOD 
and GSH; which may be attributed to MPs-induced oxidative stress as 
mentioned earlier. The oxidative stress could lead to depletion of 
circulating antioxidant markers, as well as induction of mitochondrial 
dysfunction through ROS production, which was demonstrated by other 
studies. One of the main organelles responsible for the antioxidant de-
fense systems is the mitochondria, which also produces SOD and GSH 
(Surai et al, 2019). 

Reduced antioxidant defenses result in increased ROS, that oxidize 
cellular macromolecules, including proteins, lipids, and DNA. Our study 
demonstrated significantly increased levels of MDA (lipid peroxidation 
byproduct), when animals were sub-chronically exposed to PE-MPs. 
These increased MDA levels caused by the accumulation of ROS like 
hydrogen peroxide, superoxide anion, and hydroxyl radicals. With 
increased oxidative stress, hemoglobin itself undergoes an auto- 
oxidation reaction which results in the formation of methemoglobin 
(Hb–Fe3+), and if not converted back to its original state, Hb–Fe3+ will 
degrade leading to even more ROS production (Barbarino et al., 2021). 

In our study, PE-MPs induced oxidative stress was found to be 
correlated to the dose. Rats exposed to higher doses of PE-MPs 

Fig. 4. RBCs abnormality caused by high, medium and low 
doses of polyethylene microplatics (PE-MPs) in studied 
groups. (I) Representative photographs of H& E. (a) Un-
treated control: Received only distilled water, (b)Vehicle 
control: received corn oil (the vehicle), (c and d) rats 
exposed to low dose (3.75 mg/kg PE-MPs),1 (e and f) rats 
exposed to medium dose (15 mg/kg PE-MPs), and (g and h) 
rats exposed to high dose (60 mg/kg PE-MPs). (Ach) 
Achanthocyte cell, (Ech) Echinocyte cell, (Er) Erythrocyte 
cell, (Fo) Folded cell, (He) Helmet Cell, (H-J B) Howell- 
Jolly Bodies, (Irr) Irregular shape, (Ke) Keratocyte Cell, 
(Ke) Keratocyte Cell, (Mi) Microcytes, (Mic) Microcyte, 
(Ov) Ovalocyte cell, (Sch) Schistocyte cell, (Sic) Sickle Cell, 
(Tr) Tear drop cell. Scale bar = 20 µm. (II) Number of 
abnormal RBCs/100 cells caused by high, medium and low 
doses of PE-MPs in studied groups, 5 different samples per 
group were counted. * ** significant difference from un-
treated control, vehicle control and low dose PE-MPs- 
treated groups (P < 0.001); * * significant difference from 
untreated and vehicle control groups (P < 0.001); Kruskall 
wallis test= 28.63, n = 5. Magnification= 400x.   
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Fig. 5. DNA damage induced by high, medium, and low doses of polyethylene microplatics (PE-MPs) conducted by using comets assay. (A) Untreated control: 
Received only distilled water, (B) Vehicle control: received corn oil (the vehicle), (C and D) rats exposed to low dose (3.75 mg/kg PE-MPs), (E and F) rats exposed to 
medium dose (15 mg/kg PE-MPs), and (G and H) rats exposed to high dose (60 mg/kg PE-MPs). 

Table 1 
Differences of PE-MPs induced DNA damage between studied groups.  

DNA Damage Study groups 

Untreated control 
Median (IQR) 

Vehicle control 
Median (IQR) 

3.75 mg/Kg PE-MPs 
Median (IQR) 

15 mg/kg PE-MPs 
Median (IQR) 

60 mg/kg PE-MPs 
Median (IQR) 

Kruskall 
wallis test 

P- 
value 

Tail Intensity 
(TI) 

5.87 (5.33–6.33) 5.98 (5.39–6.41) 11.34 (11.13–2.13) 15.03** (14.33–5.33) 18.62** (17.33–9.73)  31.04 <0.001 

Tail length 
(PX) 

6.33 (5.39–6.51) 6.25 (5.87–6.59) 8.96 (8.33–9.44) 11.13** (10.86–1.25) 12.88** (12.25–13.0)  31.03 <0.001 

Tail DNA (% 
TDNA) 

2.69 (2.17–3.23) 3.18 (2.85–3.81) 7.01 (6.95–7.12) 8.80** (8.40–9.71) 10.76** (10.57–1.34)  31.53 <0.001 

Tail moment 0.21 (0.17–0.33) 0.20 (0.18–0.31) 0.59 (0.58–0.66) 0.94** (0.91–0.98) 1.06** (1.02–1.12)  31.11 <0.001 
Olive tail 

moment 
0.49 (0.31–0.53) 0.42 (0.40–0.50) 0.81 (0.72–0.85) 1.27** (1.21–1.37) 1.75** (1.69–1.83)  30.75 <0.001 

* * Statistically significant from untreated control (received only distilled water) and vehicle control (received only corn oil). n = 7. 
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demonstrated a marked increase in ROS generation and impairment in 
antioxidant defense pathways when compared to animals with moderate 
dose exposure. Low-dose exposure, on the other hand, resulted in no 
significant change in these parameters. Our Fundings coincide with 
other studies (Ali et al., 2021; Dong et al., 2022; Ijaz et al., 2022; Sincihu 
et al., 2023; Sun et al., 2021; Xie et al., 2022). The results of (Li et al., 
2019), were not comparable to our results. They found that polystyrene 
nanoparticles decreased ROS and shutdown ferroptosis via triggering 
lysosome stress. These findings can be due to the fact that, different 
types of plastics and different sized may lead to different toxic effects. 

MPs can enter into the circulatory system and reach other organ 
systems causing lethal reactions depending on the amount of exposure, 
and various studies approved the accumulation of MPs in blood cells, 
which is why hematological parameters are suggestive to be a useful 

method for determining the substance toxicity and general levels within 
the body (Ma et al., 2020; Scanes et al., 2019). Erythron profiles (poi-
kilocytosis and nuclear abnormalities) have proved useful in deter-
mining MPs cytotoxicity and are therefore essential biomarkers. 

In the current study, PE-MPs caused an imminent increase in the 
percentage of poikilocytosis cells in RBCs in medium and high dose 
when compared to the control group. According to our current knowl-
edge, it is the first one to show the effect of PE-MPs on rat RBCs poiki-
locytosis. Our findings revealed that the percentage of poikilocytosis is 
dose related. PE-MPs showed Howell-Jolly bodies, keratocyte cells, and 
echinocyte cells in low doses. Howell-Jolly Bodies are cytopathologi-
cally identified as basophilic nuclear remnants (DNA clusters) in circu-
lating erythrocytes (Tong et al., 2019). It is caused by an erythropoiesis 
defect. Generally, RBCs nuclear fragments are removed mainly by the 
spleen, it acts by removing the inclusions without destroying the cells 

Fig. 6. DNA methylation induced by high, medium, and low doses of poly-
ethylene microplatics (PE-MPs). Untreated control: Received only distilled 
water, Vehicle control: received corn oil (the vehicle), and the other groups 
received PE-MPs at three different doses. * *: Significantly different from un-
treated control and vehicle control groups, (P < 0.001); Kruskall Wallis test 
= 15.564. n = 7. 

Fig. 7. Heat map correlation matrix. There were highly significant correlations between PE-MPs dose and oxidative stress marker, RBCs abnormalities, DNA changes 
by comet assay, DNA methylation and body weight among studied groups (P < 0.001). There were highly significant negative correlations between PE-MPs dose and 
GSH and SOD levels among studied group (P < 0.001). There was highly significant positive correlation between PE-MPs dose and MDA level among studied groups 
(P < 0.001). There were highly significant positive correlations between PE-MPs dose and RBCs abnormalities, DNA changes by comet assay, DNA methylation and 
body weight among studied among groups (P < 0.001). GSH: Reduced glutathione, MDA: Malondialdehyde, PE-MPs: polyethylene microplastics, RBCs: Red blood 
cells, SOD: Superoxide dismutase. P < 0.001. 

Table 2 
Simple linear regression between PE-MPs dose and hematological parameters.  

PE -MPs dose B P value 95% CI 

Lower Upper 

MDA (nmol/ml) 0.058 <0.001 0.049 0.067 
SOD (U/ml) -9.667 <0.001 -11.757 -7.577 
GSH (mg/dl) -0.040 <0.001 -0.050 -0.029 
RBCs abnormalities 0.145 <0.001 0.133 0.156 
Tail intensity (TI) 0.187 <0.001 0.146 0.228 
Tail length(PX) 0.097 <0.001 0.074 0.120 
Tail DNA (% TDNA) 0.117 <0.001 0.088 0.146 
Tail moment 0.012 <0.001 0.009 0.015 
Olive tail moment 0.020 <0.001 0.017 0.024 
DNA methylation 0.051 <0.001 0.027 0.076 
Body weight 0.365 <0.001 0.195 0.536 

PE-MPs dose is a highly significant predictor of oxidative stress markers level, 
RBCs abnormalities, DNA changes by comet assay, DNA methylation and body 
weight. GSH: Reduced glutathione, MDA: Malondialdehyde, PE-MPs: poly-
ethylene microplatics, RBCs: Red blood cells, SOD: Superoxide dismutase. 
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that contain them, which can happen due to cell fragmentation. Nuclear 
fragments are also removed by the help of the bone marrow, that takes 
place as the normoblast leaves the bone marrow via the endothelial 
pores. With these theories in mind, Holly-Jolly bodies are associated 
with nuclear maturation pathologies (Scafidi et al., 2022). So, 
MPs-induced spleen and bone marrow damage could result in these 
bodies (Zwollo et al., 2021). Furthermore, keratocyte cells are fragments 
of RBCs known as bite cells due to a bite-like defect in their membrane. 
These are caused by phagocytosis of a Heinz body, which leaves a bite in 
the cell. Echinocyte is thus a type of RBCs characterized by an abnormal 
cell membrane with small, evenly spaced thorn-like projections(Barger, 
2022). These abnormal cells could be the result of a blood vessel wall 
disease that causes the membrane of some RBCs to rupture. In this re-
gard, MPs-induced toxicity with microcirculation could result in kera-
tocyte and echinocyte production (Park and Kim, 2022). 

High and medium doses of PE-MPs, on the other hand, revealed the 
achanthocyte cell, echinocyte cell, erythrocyte cell, folded cell, helmet 
cell, howell-jolly bodies, irregular shape, keratocyte cell, microcytes, 
ovalocyte cell, schistocyte cell, sickle cell, and tear drop cell. It could be 
explained that PE-MPs interacts with erythrocytes, limiting the dehy-
drogenase of delta-aminolevulinic acid and causing RBCs cytoskeleton 
disruption through the affection of spectrin and ankyrin fibrils that are 
responsible for its normal biconcavity, resulting in poikilocytosis (Bar-
barino et al., 2021). Although, the increased production of ROS in RBCs 
may provide a plausible explanation for RBCs abnormalities, it may also 
be caused by direct interaction between MPs and their plasma mem-
branes(da Costa Araújo and Malafaia, 2021). These data are corrobo-
rated by a previous study reported by Hamed et al., 2021, who noted the 
presence of MPs-induced poikilocytosis and eryptosis in early juvenile 
Nile tilapia (Oreochromis niloticus). 

It has been recommended that comet assay is a highly sensitive and 
efficient method for assessing DNA damage and detecting DNA strand 
breakage in ICH S2 (R1) guidelines. In the current study, PE-MPs 
exposure resulted in significant DNA damage, which was indicated by 
increased tail length, increased DNA percentage within the tail, the tail 
moment, as well as the olive tail moment parameters. The genotoxic 
effects of PE-MPs may be attributed to increased ROS which can induce 
oxidation-mediated DNA damage. Roursgaard et al., 2022 did not detect 
any direct cytotoxicity in their study, but they did confirm that exposure 
to nanoplastics from PET and PP resulted in DNA strand breaks, ROS 
production, and altered cell cycle distribution, which confirms that MPs 
are a potential genotoxic substance that induces genomic damage. They 
attributed the genotoxic mechanism of action is due to direct physical 
interaction between nanoplastic particles and DNA, rather than oxida-
tive stress-induced one. In harmony with the current study, Ballesteros 
et al., (2020) found significantly elevated levels of DNA damage in 
monocytes and polymorphoneuclear (PMN) cells following PS nano-
particles exposure. Malinowska et al. (2022), also noted increased 
PS-NPs single/double-strand break formation, elevated 
8-oxo-2′-deoxyguanosine (8-oxodG) levels, and oxidized purines and 
pyrimidines, which was completely repaired in the case of the larger 
PS-NPs. They concluded that, genotoxic changes in peripheral blood 
mononuclear cells (PBMCs) were dependent on the size of particles 
tested. Studies with contradicting results can be attributed to the dif-
ferences in plastic particles, such as its type, functionalized status, and 
size (Malinowska et al., 2022). 

To elucidate the underlying mechanisms of MPs epigenetic toxicity, 
we investigated the MPs exposure effect on global DNA methylation. 
DNA function can be altered by environmental agents with no change in 
its sequence, by simply changing the DNA methylation status. Surpris-
ingly, we demonstrated that MPs exposure is linked to DNA hyper-
methylation and that the degree of hypermethylation increased with 
higher doses exposure. This finding contradicts what previously re-
ported by Im et al., 2022, who demonstrated a significant DNA hypo-
methylation in zebrafish exposed to PS-MPs. Our results are inconsistent 
also with the hypothesis that the oxidative stress can affect DNA 

compatibility to DNA methyltransferases (DNMTs), leading to DNA 
hypomethylation (Udomsinprasert et al., 2016; Ziech et al., 2011). Lind 
et al. (2013) results were supportive to some extent to the results of this 
study as they demonstrated that persistent organic pollutants are asso-
ciated with changes in DNA methylation. In the study conducted by 
Jiang et al., 2020, they suggested that DNA oxidation, especially in the 
repeated sequences, can induce methylation through the polymerase 
β-DNMTs 3b during base excision repair, inducing hypermethylation in 
repeated sequences which further support our findings. 

The present study is the first to elucidate that PE-MPs exposure is 
linked to global DNA hypermethylation in albino rats. Interesting, 
several studies have revealed the association between DNA methylation 
alteration and obesity, with evidence of implication of epigenetic 
mechanisms involving the alteration of methylation of genes related to 
metabolism (Mahmoud, 2022; Na et al., 2014; Samblas et al., 2019). 
This may to some extent explains the increased body weights of animals 
received PE-MPs in the current study1. It is of interest to elucidate the 
exact role of altered DNA methylation status triggered by toxic envi-
ronmental agents on genes implicated in obesity in future studies. 

This study emphasizes the toxicity associated with MPs and that their 
effect can be extended to DNA epigenetic damage in mammals, which 
may be linked to many of their hazardous effects on the biological sys-
tems. This supports the need for limiting the use of MPs, to minimize 
their potential risks. However, our study has some limitations, as only 
the effect on global DNA methylation was studied, however, the eluci-
dation of the link between DNA methylation status and different DNA 
methyltransferases activity. In addition, only one type of MPs and one 
species of mammals was used, and the exact level of MPs in the blood 
was not measured. Therefore, further research using the same tech-
niques for detecting DNA methyltranaferases activity using the same 
research model and the same MPs type and size are needed. More studies 
are still required to extensively elucidate MPs epigenetic mechanisms, 
and extend the study to other species, tissues using different types and 
sizes of MPs. 

5. Conclusion 

The current study showed that ingested MPs have negative effects on 
the hematological antioxidative statuses and elevated poikilocytosis 
cells percent in RBCs of rats. The study also provides extra evidence of 
PE-PMs-induced genotoxicity in mammals and is the first one to docu-
ment their epigenetic toxicity in mammals. It also confirms that the 
toxicity of MPs is highly dose-related, and that the effects of PE-MPs can 
be minimized by reducing exposure. 
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